April 1, 1992
High-Performance Scientific Computing Using C++

K. G. Budge, J. S. Peery and A. C. Robinson
Computational Physics Research and Development (1431)
Sandia National Laboratories
Albuquerque, NM 87185-5800
kgbudge@sandia.gov, jspeery@cs.sandia.gov, acrobin@cs.sandia.gov

Abstract

Concepts from mathematics and physics often map well to object-oriented software since
the original concepts are of an abstract nature. We describe our experiences with develop-
ing high-performance shock-wave physics simulation codes in C++ and discuss the soft-
ware engineering issues which we have encountered. The primary enabling technology in
C++ for allowed us to share software between our development groups is operator over-
loading for a number of “numeric” objects. Unfortunately, this enabling feature can also
impact the efficiency of our computations. We describe the techniques we have utilized for
minimizing this difficulty.

Introduction

Developers of scientific software systems are tasked to implement abstract ideas and concepts. The software
implementation of algorithms and ideas from physics, mechanics and mathematics should in principle be
complementary to the mathematical abstractions. Often these ideas are very naturally implemented in an
object-oriented style. For example, our group is developing software to solve the equations

5= pd

JeT +pb = v 1
pb = P (1)
d_ _ .,_d

77 = fOga T,) ()

subject to a variety of boundary conditions. These equations describe the mechanical response of a continu-
ous medium. They contain numerous abstract mathematical objects such as scalar, vector, and tensor fields,
arithmetic operators, and calculus operators. Physical concepts such as the equation of state of a physical
substance and its constitutive response model can also be encapsulated very cleanly as a object. Similar
objects are found in the equations describing many other physical systems. All of these can be represented
by appropriate data structures in a high-level computer language.

Traditionally, scientists have relied on FORTRAN for high-performance computing. The reasons for this are
clear. FORTRAN optimizing compilers have been around for a long time and produce extremely efficient
code. Large libraries of numerical routines are available in the language. It is familiar to almost every scien-
tific worker. The drawbacks of standard FORTRAN are also well-known. It is devoid of mandated type
checking. It has no support for structures. The concept of a free memory store does not exist. Its grammar
encourages an atrocious style of programming. Note that these statements argandaalFORTRAN-

77. The deficiencies of FORTRAN are so painful that numerous vendors have provided proprietary exten-
sions to the language. For example, most vendors now support the nonstandard DO-ENDDO construct.
Some codes simply cannot avoid using FORTRAN language extensions. For example, codes using large
databases and complicated algorithmmsstfind a way to dynamically allocate memory. Since no provisions

for this exists in standard FORTRAN-77, programmers must either use proprietary extensions which supply
the existing functionality, make calls to system level routines based on C or develop intricate memory man-
agement schemes from common memory.

It is not unknown for a large scientific production code written in FORTRAN to exceed half a million lines

in length and to include numerous platform-dependent statements. This represents a maintenance challenge
comparable to that for a small operating system. Furthermore, such code tends to be very opaque. Unless the
code is extremely well-documented, the transfer or retirement of one of its programmers can effectively
freeze portions of the code, because no one else will ever be able to figure out what it does.

Many scientific programming groups have come to the realization that such programming practices are pro-
hibitively expensive. What is needed is a programming environment in which code is highly reusable, trans-
parent to the reader, and easily debugged during development and maintenance, but which retains
FORTRAN:-like efficiency. As a result, there is a growing interest in more modern languages in the scientific
community. C++ has attracted the most interest because of its wide availability and support in the general
programming community and because of its explicit design goals to provide object-oriented functionality
and excellent software engineering characteristics in a way which does not totally destroy efficiency. Appli-
cations include distributed particle simulations, partial differential equations, fluid mechanics, robotic lan-
guages, mesh generation, adaptive grid methods, data-parallel C, general numeric libraries, image algebras,
large scientific database management and genetic algorithms. See references [1]-[20] which are organized
roughly chronologically.

It should be pointed out that the Fortran 90 standard has recently been adopted [21]. In addition a specifi-
cally non-ANSI based effort is underway to agree upon a High Performance Fortran standard this year. The
final universal acceptance and wide availability of compilers for these languages is likely but on an uncertain
time scale. A major reason for not choosing to do our current development work in a Fortran 90 style lan-
guage was the unclear state of the standard at the time we began our work as well as very uncertain availabil-
ity and support considerations on our rapidly changing target architectures. In addition, current language
specifications do not appear to provide the kind of robust software engineering characteristics which we
have come to enjoy.

In this paper we briefly describe our use of C++ in two large-scale scientific code development projects and
give examples of how we have mapped interesting physical, mathematical and computational concepts to
C++. One project is developing a shock wave physics simulation code (PCTH) for fixed “Eulerian” grids
with massively parallel MIMD architectures as the primary target, and the other project (RHALE++) uses an
“Arbitrary Lagrangian-Eulerian” technology based on an unstructured grid finite element technology. In the
following sections we describe several object-oriented concepts which we are utilizing and how we are
attempting to realize the power of the abstraction capability and the excellent software engineering features
which the C++ language provides. Subsequently, we discuss some aspects of the efficiency difficulties which
we have encountered as well as approaches to their resolution.

C++ As a Meta-Language for Mathematical Physics

We tend to regard C++ as being essentiatlyeta-languagevhose dialects can be tailored to a particular
field of application. Our dialects of C++ are tailored to mathematical physics. For example, the polar decom-
position of a velocity gradierlt is expressed by the equations [22]

D = 3(L+LT) = Sym(L) 3)
W = %(L —LT) = Anti(L) (4)
= [&jVmDmil = DuaKvD) (5)

® = Dualw)—2(vV =Tr(V)1)1z (6)

Q= %Dual(d)) (7)

dr
— = QR 8
Tt (8)

dv
— = LV-VQ 9
It (9)
The time discretization used to integrate the last two equations is
Rt = B - 20T B+ 2anake (10)
2 0 2

v+l = v SymLV -V Q)At (11

In RHALE++ we have defined classes representing the vector and tensor objects in these equations [23].
Using these classes, we can code this algorithm as

void Decompose(const double delt, SymTensor& V,
Tensor& R, const Tensor& L)
{
SymTensor D;
AntiTensor W, Omega,;
Vector z, omega;

D = Sym(L);
W = Anti(L);
z = Dual(V*D);

omega = Dual(W) - 2.0 * Inverse(V - Tr(V) * One) * z;
Omega = 0.5 * Dual(omega);

R = Inverse(One - 0.5 * delt * Omega) *
(One + 0.5 * delt * Omega) * R;
V +=delt * Sym(L * V - V * Omega);

Note the heavy use of operator overloading. This code is transparent and its underlying class libraries are
versatile and easy to maintain. A physicist familiar with the polar decomposition algorithm can make imme-
diate sense of this code fragment without the need for any additional documentation.

By contrast, the FORTRAN version of this subroutine is

subroutine decompose(delt,V_xx,V_xy,V_xz, V_yy,
*V_yz,V_zz, R_xx, R_xy, R_xz, R_yx, R_yy, R_yz,
*R_zx,R_zy,R_zz, L xx,L_xy,L_xz, L _yx, L_yy,
*L yz,L_zx,L_zy, L 72)

D_xx =L_xx

D_xy = 0.5*(L_xy+L_yx)

... about three pages of these proceedings

V_xy =V_xy + 0.5*(t3_xy + t3_yx)
V_zz=V_zz+1t3_zz

return

end

The stylistic advantages of C++ are obvious. The second subroutine (in FORTRAN) is virtually unreadable.
It is also very difficult to debug. However, the FORTRAN version is somewhat more efficient. Several
expressions are evaluated in the C++ version that are never used. In principle, a sufficiently intelligent opti-
mizer could eliminate these expressions.

Field classes representing scalar, vector, and tensor fields are fundamental to our approach to simulation
coding. Field classes are coded as sets of smart arrays representing the components of vector or tensor fields.
At this level, no topological information is included in the fields. Thus, while numerous element-by-element
operations are overloaded, no calculus operations are defined. These are added in classes derived from the
basic field classes.

These field classes hide subscripting and loops, eliminating a common source of error in FORTRAN code.

In the FORTRAN code fragment above the functional interface looks essentially the same whether the argu-
ments are scalars or data-parallel arrays. In the C++ case the same holds true except the compactness of the
high-order tensor fields hides the extent of the implied data and the interactions between tensor elements
implied by the mathematical operations.

Encapsulation of Physical Concepts

In our simulation codes empirical equations are used along with the basic conservation equations to describe
how a given material behaves. In shock physics, two of these empirical equations are an equation of state
and a constitutive model. An equation of state generally determines the pressure, temperature, and sound
speed of a material based on the material's density and energy. A constitutive model, on the other hand,
determines the stress state of a material based on the material deformation. Within each of these concepts
numerous models are available; however, the inputs and outputs are the same. C++ can be used to encapsu-
late the uniqueness of a model (particularly the private data) and provide a common interface to the concept.

Using C++ to encapsulate physical concepts can be best seen in an equation of state class. Encapsulation
begins with the concept of an abstract class that contains all data and functions common to every equation of
state. A simplified summary of such a class is given as

class Equation_of State {
public:
Equation_of_State();
Equation_of_State(const Equation_of_State&);
~Equation_of State();
virtual void Update_Thermodynamic_State(
const Field& density,
const Field& energy,
Field& pressure,
Field& temperature,
Field& sound_speed) const = 0;
I3
This abstract class provides a common interface to updating the thermodynamic state of materials and con-
tains data that is unique to every equation of state. Constructing a unique equation of state simply requires
deriving from the abstract class, adding any unique data, and providing a unique function for updating the
thermodynamic state of the material. For example, an ideal gas equation of state class is given as

class ldeal_Gas : public Equation_of State {
private:
double gamma; // Ratio of specific heats
double cv; // Specific heat
double gamma_minus_one; // Gamma - 1
public:
Ideal_Gas();
Ideal_Gas(const Ideal_Gas&);
~ldeal_Gas();
void Update_Thermodynamic_State(
const Field& density,

const Field& energy,

Field& pressure,

Field& temperature,

Field& sound_speed) const;

3

The third private variable (gamma-1) is indicative of the internal constants which a given equations of state
might create in order to more efficiently perform its functions as a server class for fields which are passed to

it. With this approach, to add an additional equations of state option one only has to modify the physics code

at the one location where a particular type of equation of state is specified for a given material. The rest of
the code utilizes only the base class pointer and the correct function are called at run time. In addition, by
carefully design, a class that abstracts the physics can be used by many codes (the equation of state and con-
stitutive classes are being designed to be used both by PCTH and RHALE++) and can be extended quickly.
For example, it has taken less than 4 hours to add a complicated new constitutive model to the RHALE++
code.

Tracer Particle Objects

PCTH is being developing with massively parallel MIMD architectures as a primary focus although with a
data-parallel syntax to facilitate access to vector hardware. One of the requirements for these codes is for
something that is calledteacer particle These are points which do not interact with the simulation flow

field but are required to follow the flow. Since the PCTH code decomposes work spatially by subdividing the
simulation space, these patrticles (objects) need to skip from node to node of the massively parallel machines
according to the dynamics of the flow field. These particles store an identifier, position, velocity and local
state values. They know how to send themselves to neighboring nodes as well as how to create a copy of a
particle which as been sent from a neighboring node. The physics code knows how to interpolate state values
onto the tracer particles.

C++ Software Engineering Experience

At this point in time there are relatively few classes for purchase or in the public domain that address the
needs of scientific community and, of these, none have been ported and optimized for vector and parallel
computing architectures. In addition, there are no classes for scientific computing that have been adopted as
a standard. Part of the philosophy behind C++ is not to “re-invent the wheel;” however, at this time, most of
the burden of developing base classes, such as matrix, array, and vector classes, falls on the members of our
project teams. As a result, there is a proliferation of scientific class libraries, each with their own particular
syntax, functionality, and performance.

The redundance of these scientific classes is very unfortunate because developing robust base classes is
extremely expensive. One must hope that the lifetime of the code project is long enough to reap the rewards
of the initial investment in developing the base classes.

The RHALE++ and PCTH projects both began with their own flavors of Field classes. The RHALE++
project implemented the field classes as arrays of objects while the PCTH project implemented an object of
arrays approach. However, it was realized that although the initial investment of developing a robust array
class is expensive, it is equally expensive to port and tune the class to a particular computer architecture. As
a result, a common array class, which serves as the building block for scalar, vector, and tensor fields, is
being developed as the basis for performing mathematical operation in both codes in an “object of arrays”
approach. We feel that this is a wise investment since the performance of the array class is a direct indication
of the performance of theses two codes and thus only this class must be tuned for a particular computer
architecture and both codes will benefit.

Although developing robust base classes is costly, extending or deriving from these classes is relatively inex-
pensive. For example, extending an array class to a vector array class would be very inexpensive for all the
operations for which one operates on the components of a vector.

A major reason for going with C++ was the complexity of the algorithms which we were dealing with in the
case of the RHALE++ project and the complexity of the underlying (current and unknown future) parallel
architectures in the case of the PCTH project. By using object-oriented concepts we can hide the underlying
architectures to a great degree and thus enable us to quickly port to any machine which we may be required
to run our code on.

The fact that C++ is based on C gives us confidence that a C++ environment can be provided relatively
cheaply on any architecture of interest. The architectures potentially include a variety of MIMD, SIMD,
data-parallel and vector processors as well networks of high performance workstations. In addition we hope
to eventually take full advantage of the workstation software tools market even on the exotic architectures
which we must deal with. We believe that much of this software will be written in C++ in the future. In fact,

in PCTH we are already utilizing a commercial solid modeling toolkit written in C++ to implement the vol-
ume fraction computations in the initialization phase of our simulations. As we consider balancing produc-
tion software development with the uncertainties of the future, C++ has appeared to be an excellent bet. Our
rational is similar to common arguments given for moving to C++ for production development [24].

One of the most enticing aspects of C++ is the elimination of many common bugs introduced in Fortran cod-
ing. Many of these bugs are removed by the strong type checking and function argument matching capabili-
ties inherent in C++. With the use of overloaded operators, index mistakes are eliminated or reduced to a
single location in the code which can be easily identified and corrected. For most scientific applications,
ninety percent or more of the bugs have just been eliminated. However, for most Fortran programmers that
switch to C or C++, a new and much more nasty bug is potentially introduced with the concept of pointers.
Fortunately, there are very nice debugging environments readily available for C++ due to the strong follow-
ing in the overall programming community.

In the RHALE++ and PCTH projects, it has been our experience that we spend much less time debugging
executable C++ code than Fortran code and that most of our debugging activities are in debugging the phys-
ics (incorrectly coded or poor selection of algorithms) and sometimes in locating bad pointers. This excel-
lent experience is due mainly to our use of overloaded operators and the robust error detection features of
C++ compilers.

C++ Reusability

Another aspect of C++ and object-oriented programming is the ease with which new physical models can be
added to a standing code and ported between platforms and projects. Both the PCTH and RHALE++
projects are developing large and complex codes which will be evolving for a number of years. PCTH uses a
finite-difference method, whereas RHALE++ uses a finite-element method. These two approaches to numer-
ical calculus differ considerably.

Despite the profound difference in overall methods, we are now in the process of merging code portions
which are conceptually identical. This is possible because of the field class concept which is inherent in the
underlying physics and thus the codes themselves. We are now converting the two codes to use the same set
of basic field classes, which are then specialized for finite difference/finite element field classes. Both codes
must eventually run on a wide variety of platforms, ranging from PCs to the newest massively parallel com-
puters. The architectural differences between platforms require different optimization strategies. We are con-
fident that these can be hidden in a great degree in the field class libraries. The need to write efficient code
for massively parallel computers and the prospect of hiding domain decomposition and message passing in
the field class libraries was a strong incentive to investigate scientific C++ in the first place.

The equations of state and strength models are derived from abstract base classes but take fields as argu-
ments. It does not really matter whether the underlying field is based on field elements or finite differences.
This makes it relatively simple to incorporate new equations of state or strength models in the codes.

The original equation of state code was developed for PCTH. It was then moved relatively easily to RHALE
and the new upgraded capabilities will move readily back to PCTH. At this time we are converging on the
correct specification and approach.

Complicated algorithms can also benefit from abstract formulations. We have had the experience of moving

a complicated interface tracking algorithm from PCTH to RHALE essentially as a cut-and-paste.

The fundamental reason why we are able to move in the direction of better code reuse is because of the com-
mon underlying physical concepts which must be modeled by out two codes. The connecting link is the use
of field classes which can be considered to be a “numeric” type with appropriate overloaded operators.
Unfortunately overloaded operators, which have the potential for such excellent code maintainability, reus-
ability and extensibility for our development projects, are also the major impediment for efficient execution
of our codes. These difficulties and the extent to which they have been solved will now be described.

C++ Efficiency Issues for Overloaded Operators

All the advantages of C++ are unfortunately offset to some degree by the difficulty of developing efficient
overloaded operator methods for large array objects. Many high performance machines require array (vec-
tor) operations to achieve good performance. The fact that the current C++ language and implementations do
not support compiler optimization of large arithmetic objects, as if they were fundamental types, causes
extensive difficulties for developing efficient C++ applications.

This is illustrated in Table 1, which shows the estimated processor speeds for test versions of the polar
decomposition algorithm. Both C++ and FORTRAN-77 versions were tested on Sun workstations and San-
dia’s CRAY-YMP for a range of field sizes. The C++ version uses reference counting and memory manage-
ment techniques discussed later in this section. In addition, innermost loops are implemented through calls
to FORTRAN subroutines (using the C++ external linkage specification facility). The statistics show that
peak speed for pure FORTRAN-77 is two or three times greater than that for C++ and that C++ involves a
considerable overhead (reflected in the array size at which one gets 50% of peak performance).

Table 1. Performance of Field Classes In a Polar Decomposition Test Problem

elements Sun Sparc-2 | Sun Sparc-2/H Cray YMP Cray YMP/F
MFlops MFlops MFlops MFlops
1 0.04 -- 0.11 12.7
10 0.31 1.3 1.03 63.7
100 0.92 3.1 9.6 185.8
1000 0.89 2.7 59.1 221.9
10000 0.88 2.7 123.7 2254
100000 out of memory out of memory 140.0 225.9
50% peak 18 elements 13 elements 1380 elements 27 elements

These figures are somewhat discouraging taken at face value. The Cray is a vector machine and its overall
performance is extremely sensitive to scalar portions of the code. The scalar overhead tends to be dominant
except when vector lengths are large. The peak speed of C++ is about half of the Fortran speed.

What accounts for these results? The problem is that C++ strongly isolates binary operations. Consider the
following test program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

class Array {

public:

Array(void);

Array(const int n);

Array(const int n, const double[]);
Array(const Array&);
~Array(void);

Array& operator=(const Array&);

double& operator[](const int);

friend Array operator*(const Array&, const Array&);
friend Array operator+(const Array&, const Array&);

private:
intn;
double *data;

3

inline Array::Array(void) :
n(0),

data(NULL)

{

inline Array::Array(const int nn) :
n(nn),
data(new double[nn])

{}

inline Array::Array(const int nn, const double d]) :
n(nn),
data(new double[nn])

memcpy(data, d, sizeof(double)*n);

inline Array::Array(const Array& src) :
n(src.n),
data(new double[src.n])

{

memcpy(data, src.data, sizeof(double)*n);

inline Array::~Array(void){
delete data;

}

inline Array& Array::operator=(const Array& src){
delete data;

n = src.n;

data = new double[n];

memcpy(data, src.data, sizeof(double)*n);
return *this;

}

inline double& Array::operator[](const int nn){
if (Nnn<0 || nn > n) abort();
return data[nn];

inline Array operator*(const Array& a, const Array& b){
Array result(a.n);

for (register i=0; i<a.n; i++)

result.data[i] = a.data[i] * b.data[i];

return result;

}

inline Array operator+(const Array& a, const Array& b){
Array result(a.n);

for (register i=0; i<a.n; i++)

result.data[i] = a.data[i] + b.data]i];

return result;

}

main(){

const int SIZE = 50000;

static double a_data[SIZE] ={2.,5.,3.,8. };
static double b_data[SIZE] ={5., 3., 4., 2. };
static double c_data[SIZE] ={ 3., 4.,5.,6. };
static double x_data[SIZE] ={2.,5.,7.,9.};

Array A(SIZE, a_data);
Array B(SIZE, b_data);
Array C(SIZE, c_data);
Array X(SIZE, x_data);
Array Y;

for (register i=0; i<100; i++){
Y = C + X*(B + X*A);
}

printf(“First element is %f\n”, Y[0]);

The C and FORTRAN equivalents of this program achieve a peak performance of 230 MFlops on the
CRAY-YMP. This unoptimized C++ version achieves only 49 MFlops.

The CFRONT translater generates code which is essentially equivalent to

struct Array {
intn;
double *data ;

3

static char multiply _Array_Array(
struct Array *result,

struct Array *a,

struct Array *b)

struct Array Result ;
register inti;
int itmp ;

itmp = a->n;
Result.n = itmp;
Result.data = (double*)malloc(sizeof(double)* itmp);

for(i=0;i<a->n;i ++)
Result.data[i] = a->data [i] * b->data [i];

result->n = Result.n;

result->data =
(double*)malloc(sizeof(double)*Result.n);
memcpy(result->data, Result.data,
sizeof(double) * result->n);

free (Result.data);
return ;

}

static char add_Array_Array (
struct Array *result,

struct Array *a,

struct Array *b)

struct Array Result ;
register inti;
intitmp ;

itmp = a->n;
Result.n = itmp;
Result.data = (double *)malloc(sizeof(double)*itmp);

for(i=0;i <a->n ;i ++)
Result.data[i] = a->data]i] + b->datali];

result->n = Result.n;

result->data =

(double *)malloc(sizeof(double)* Result.n);
memcpy(result->data, Result.data ,
sizeof(double)* result->n);

free (Result.data);
return ;

}

int main (){

static double a_data [50000]= { 2.
static double b_data [50000]= { 5.
static double c_data [50000]= { 3.
static double x_data [50000]= { 2.

struct Array A ;
struct Array B ;
struct Array C ;
struct Array X ;
struct Array Y ;

register inti;

A.n =50000;
A.data = (double *)malloc (sizeof(double)* 50000);
memcpy(A.data , (double*)a_data, sizeof(double)* A.n);

B.n = 50000;
B.data = (double *)malloc (sizeof(double)* 50000);
memcpy(B.data , (double*)b_data, sizeof(double)* B.n);

C.n =50000;
C.data = (double *)malloc (sizeof(double)* 50000);
memcpy(C.data , (double*)c_data, sizeof(double)* C.n);

X.n =50000;
X.data = (double *)malloc (sizeof(double)* 50000);
memcpy(X.data , (double*)x_data, sizeof(double)* X.n);

for(i=0;i < 100 ;i ++){
struct Array atmp1 ;
struct Array atmp2 ;
struct Array atmp3 ;
struct Array atmp4 ;

multiply_Array Array(&atmpl, &X, &A);
add_Array_Array(&atmp2, &B, &atmpl);
multiply_Array Array(&atmp3 , &X, &atmp?2);
add_Array_Array(&atmp4, &C, &atmp3);

free(Y.data);

Y.n = atmp4.n;

Y.data = (double *)malloc(sizeof(double)* Y.n);
memcpy(Y.data, atmp4.data, sizeof(double)* Y.n);

free(atmp4.data);
free(atmp3.data);
free(atmp2.data);
free(atmpl.data);

printf (“First element is %f\n”, (0 > Y.n ? abort(),
0 : Y.data[0]));\

free(Y.data);
free(X.data);
free(C.data);
free(B.data);
free(A.data);

}

Loops are not inlined. Thus, although they vectorize individually, they cannot be chained. In addition, con-
siderable effort is wasted allocating and de-allocating memory for the temporaries and copying the contents
of temporaries to local variables.

The latter difficulty is solvable through the well-known techniquesfdrence countindgJsing this tech-
nigue, the definition oflass Array is changed as follows:

class Array {

public:

Array(void);

Array(const int n);

Array(const int n, const double[]);
Array(const Array&);
~Array(void);

Array& operator=(const Array&);

double& operator[](const int);

friend Array operator*(const Array&, const Array&);
friend Array operator+(const Array&, const Array&);

private:

int n;

int *ref_count;
double *data;

3

inline Array::Array(void) :
n(0),

data(NULL),
ref_count(NULL)

{}

inline Array::Array(const int nn) :
n(nn),

ref_count(new int(1)),

data(new double[nn])

{1

inline Array::Array(const int nn, const double d[]) :
n(nn),

ref_count(new int(1)),

data(new double[nn])

{

memcpy(data, d, sizeof(double)*n);

inline Array::Array(const Array& src) :
n(src.n),

data(src.data),
ref_count(src.ref_count)

if (ref_count) (*ref_count)++;

inline Array::~Array(void){

if (ref_count && !--*ref_count){
delete data;

delete ref_count;

}

}

inline Array& Array::operator=(const Array& src){
if (ref_count && !--*ref_count){
delete ref_count;

delete data;
}
n = src.n;

ref_count = src.ref_count;

if (ref_count) (*ref_count)++;
data = src.data;

return *this;

}

With this change, the peak computation rate jumps to 84 MFlops -- a 70% increase, but still far short of the
230 MFlops achieved with conventional C coding.

Profiling of our test code shows that, for moderate array sizes, much time is spent in the memory allocation
and deallocation routines. Our experience is that the scalar overhead can be significantly reduced by taking
charge of memory management through overloa@®edanddelete operators. If we use the memory

manager we developed for the field class library, the computation rate jumps from 3.7 to 8.5 MFlops for
small arrays (~128 elements)..

Now consider some hypothetical future enhancements to the compiler. If loops inlined, the translator would
produce code within the main program loop equivalent to

for(i=0; i <100 ;i ++) {
struct Array atmpl ;
struct Array atmp?2 ;
struct Array atmp3 ;
struct Array atmp4 ;
struct Array Result ;
register int ii;

Result.n = X.n;

Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

for(ii=0; ii < X.n; ii++)
Result.data[ii] = X.data[ii] * A.datal[ii];

atmpl.n = Result.n;

atmpl.data = Result.data;
atmpl.ref_count = Result.ref_count;

if (atmpl.ref_count) (*atmpl.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count){
free (Result.data);
free (Result.ref_count);

}

Result.n = B.n;

Result.data = (double *)malloc(sizeof(double)*B.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count =1,

for(ii=0; ii < B.n; ii++)
Result.data[ii] = B.datal[ii] + atmpl.datalii];

atmp2.n = Result.n;

atmp2.data = Result.data;
atmp2.ref_count = Result.ref_count;

if (atmp2.ref_count) (*atmp2.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

Result.n = X.n;

Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

for(ii=0; ii < X.n; ii++)

Result.data[ii] = X.datal[ii] * atmp2.dataliil;

atmp3.n = Result.n;

atmp3.data = Result.data;
atmp3.ref_count = Result.ref_count;

if (atmp3.ref_count) (*atmp3.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

Result.n = C.n;

Result.data = (double *)malloc(sizeof(double)*C.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

for(ii=0; ii < C.n; ii++)
Result.data[ii] = C.datalii] + atmp3.datalii];

atmp4.n = Result.n;

atmp4.data = Result.data;
atmp4.ref_count = Result.ref_count;

if (atmp4.ref_count) (*atmp4.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

if (Y.ref_count && !--(*Y.ref_count)){
free(Y.ref_count);
free(Y.data);

}

Y.n = atmp4.n;

Y.ref_count = atmp4.ref_count;

if (Y.ref_count) (*Y.ref_count)++;

Y.data = atmp4.data;

if (atmp4.ref_count && !--(*atmp4.ref_count)){
free(atmp4.ref_count);
free(atmp4.data);

}

if (atmp3.ref_count && !--(*atmp3.ref_count)){
free(atmp3.ref_count);
free(atmp3.data);

}

if (atmp2.ref_count && !--(*atmp2.ref_count){
free(atmp2.ref_count);
free(atmp2.data);

if (atmpl.ref_count && !--(*atmpl.ref_count){
free(atmpl.ref_count);
free(atmpl.data);
}
}

The individual loops are separated by substantial sections of code. Close examination of these reveals that
the code can be rearranged:

for(i=0; i <100 ;i ++) {
struct Array atmp1 ;
struct Array atmp?2 ;
struct Array atmp3 ;
struct Array atmp4 ;
struct Array Result ;
register int ii;

Result.n = X.n;

Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

atmpl.n = Result.n;

atmpl.data = Result.data;
atmpl.ref_count = Result.ref_count;

if (atmpl.ref_count) (*atmpl.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count){
free (Result.data);
free (Result.ref_count);

}

Result.n = B.n;

Result.data = (double *)malloc(sizeof(double)*B.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

atmp2.n = Result.n;

atmp2.data = Result.data;
atmp2.ref_count = Result.ref_count;

if (atmp2.ref_count) (*atmp2.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

Result.n = X.n;

Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count =1,

atmp3.n = Result.n;

atmp3.data = Result.data;
atmp3.ref_count = Result.ref_count;

if (atmp3.ref_count) (*atmp3.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

Result.n = C.n;

Result.data = (double *)malloc(sizeof(double)*C.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count =1,

atmp4.n = Result.n;

atmp4.data = Result.data;
atmp4.ref_count = Result.ref_count;
if (atmp4.ref_count) (*atmp4.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

if (Y.ref_count && !--(*Y.ref_count)){
free(Y.ref_count);
free(Y.data);

}

Y.n = atmp4.n;

Y.ref_count = atmp4.ref_count;
if (Y.ref_count) (*Y.ref_count)++;
Y.data = atmp4.data;

for(ii=0; i < X.n; ii++)
atmp1.data[ii] = X.datalii] * A.datalii;

for(ii=0; ii < B.n; ii++)
atmp2.datalii] = B.datal[ii] + atmpl.datalii;

for(ii=0; ii < X.n; ii++)
atmp3.datalii] = X.datal[ii] * atmp2.datalii];

for(ii=0; ii < C.n; ii++)
atmp4.datalii] = C.data]ii] + atmp3.datalii];

if (atmp4.ref_count && !--(*atmp4.ref_count)){
free(atmp4.ref_count);
free(atmp4.data);

if (atmp3.ref_count && !--(*atmp3.ref_count)){
free(atmp3.ref_count);
free(atmp3.data);

if (atmp2.ref_count && !--(*atmp2.ref_count){
free(atmp2.ref_count);
free(atmp2.data);

}

if (atmpl.ref_count && !--(*atmpl.ref_count){
free(atmpl.ref_count);
free(atmpl.data);

}
}

This puts the loops together and permits chaining. The only assumptions made in rearranging the code in
this manner are th#te allocation/deallocation routines have no side effantsthathe allocation routine

returns a pointer to unaliased memoris is equivalent to requiring that the global operaters and

delete have no side effects and no aliasing. Failure to obtain memory in the allocation routine should
throw an exception rather than returning a null pointer. If permitted to make these assumptions, an extremely
intelligent compiler might eliminate the allocation/deallocation operations entirely.

Several other techniques for improving vector performance are known, although we have not implemented
them in our present codes. The techniquaedérred expression evaluatietiminates nearly all large tem-
poraries, but with a significant overhead cost. The technique consists of building a parse tree for each expres-

sion at run time, which is only evaluated when it is assigned to a variable or otherwise used. Temporaries
contain tree nodes rather than data and use a relatively small amount of memory. Furthermore, one can apply
optimizations to the parse tree, although the run time overhead involved may be prohibitive unless the arrays
are very large [25].

An equivalent effect (with greatly reduced overhead) could be obtained by extending the C++ language to
permit overloading of entire parse trees. For example, the signature

Array& operator=+(Array&, const Array&, const Array&)
might correspond to

a=b+c;
while

Array operator+*(const Array&, const Array&, const Array&)
would correspond to

a + b*c;

The chief objection to this approach is its complexity, particularly if one attempts to extend it to arbitrarily
complex parse trees.

Another approach would be to permit users to specify optimizations along with the definition of a class and
its operations. For example, one could instruct the compiler to replace all expressions of the form
a=b+cd;
with the expression
a=c*d,a+=Db;
which might be easier to optimize because no memory allocations take place between the evaluation of the
two sub-expressions.

Although we have no direct experience to date the advent of return value optimizing compilers is encourag-
ing [26].

The simplest solution may be to standardize an array class. Since the array class name would become a
reserved identifier, vendors would be free to develop compilers that implement the array class as a built-in

type.

Even with the difficulties described above, we have seen that our C++ code can perform well with present
C++ language systems. We have simulated impact events on several high performance computer architec-
tures using our C++ codes, and have obtained performance results which are competitive with previous gen-
eration FORTRAN codes. In the case of PCTH running on the nCUBE hypercube we have implemented
imbedded assembly language routines for many of the operations in the base field classes (though not yet in
the calculus type operator classes). Results to date show that for sufficiently large granularities no more than
about a 50 percent loss will be sustained. Further optimization should improve this estimate considerably.
The required granularity tends to be much larger than the granularity required for good efficiencies due to
message passing overhead but not so large as to be unrealistic for utilizing the machine effectively for our
simulations. On 1 CPU of the Cray YMP, the PCTH code has achieved 90 percent of the original CTH
(FORTRAN 77) code speed on a fairly complicated two-dimensional problem with a 250x250 field granu-
larity. In this case as well, smaller problems suffer from scalar code overhead as would be expected from the
results described earlier. The reasons the numbers compare so well for the CRAY is the fact that every single
vector operation in the field classes have been carefully optimized and the fundamental vector lengths turn
out to be much larger in the PCTH code than in the CTH code (due to the field abstraction). It is also possi-
ble that there are not sufficient chaining operations in the CTH algorithms to significantly boost overall per-
formance over the binary operation limit. These results, for a base field class whose methods implement
reference counting, internal memory management and specialized routines, are sufficiently encouraging for
us to believe that C++ can become an extremely effective language for scientific and engineering program-
ming as better class libraries, language features, and optimizing compilers become generally available.

Summary

The abstractions and software engineering properties of the C++ language have been found to be an excel-
lent fit to large scale scientific software development for the strong shock wave physics codes which we are
developing. We have found that considerable effort must be expended in the design (and redesign) of base
classes which are to be used in our codes. However, once these classes are developed, we find that excellent
control over the development of additional code is obtained. We have demonstrated that code based on
object-oriented ideas can be more readily reusable (shareable) by other scientific developers. We plan to
share our code to an even greater extent in the future as current classes are redesigned. Good reusability and
shareability for our application classes and algorithms tends to hinge on the extensive use of operator over-
loading for objects which are essentially “numeric” types. Unfortunately, this is also the most difficult aspect

of the language to implement with efficiencies which approach C or Fortran. The various techniques which
we have implemented to improve operator overloading efficiencies allow us to approach but not exceed For-
tran efficiencies on the high-performance architectures which we have investigated as long as our objects are
of sufficiently large granularity. Our current efficiency estimates are within acceptable limits but we consider
that much more attention must be paid to issues of optimization of numeric types both from the standpoint of
compiler optimization and the language specification. The rapid increase in interest for using C++ that we
observe in the scientific computing community implies that an opportunity to gain a strong foothold in this
market is available. We consider that the many advantages for software development obtained by C++ are
worth the price today but that continued rapid development of the fundamental technology with respect to
operator overloading of numeric object types is essential to compete effectively in the future.

Acknowledgments

This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under
contract number DE-AC04-76DP00789.

References

[1] 1. G. Angus and W. T. Thompkins, “Data Storage, Concurrency, and Portability: An Object Oriented
Approach to Fluid Mechanics,” The Fourth Conference on Hypercubes, Concurrent Computers and
Applications, 1989.

[2] R.J.Collins, “CM++: A C++ Interface to the Connection Machine,” Proceedings of the Symposium
on Object Oriented Programming Emphasizing Practical Applications, Marist College, Sept. 1990.

[3] D.J. Miller and R. C. Lennox, “An Object-Oriented Environment for Robot System Architectures,”
IEEE International Conference on Robotics and Automation, 1990.

[4] D.W. Forslund, C. Wingate, P. Ford, J. S. Junkins, J. Jackson, S. C. Pope, “Experiences in Writing a
Distributed Particle Simulation Code in C++,” USENIX C++ Conference Proceedings, San Fran-
cisco, CA, April 9-11, 1990.

[5] R.J.Collins and D. R. Jefferson, “Selection in Massively Parallel Genetic Algorithms,” Proceedings
of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 1991.

[6] A.Baden, C. Day, R. Grossman, D. Lifka, E. Lusk, E. May, And L. Price, “A data model for compu-
tations in high energy physics (preliminary report),” Laboratory for Advanced Computing Technical
Report Number LAC91-R8, Univ. of lllinois at Chicago, December, 1991.

[7] C.M. Chase, A. L. Cheung, A. P. Reeves and M. R. Smith, “Paragon: A Parallel Programming Envi-
ronment for Scientific Applications Using Communication Structures,” 1991 International Confer-
ence on Parallel Processing.

[8] T. Keffer, “Object-Oriented Numerics, Part 1: Vectors, Matrices and All That Stuff,” The C++ Jour-
nal, 1(4), 1991, pp. 3-9.

[9] I. G. Angus, “Parallelism, Object Oriented Programming Methods, Portable Software and C++,”
Proc. 8th Computing in Civil Engineering Symposium, American Society of Civil Engineers, 1992,
pp. 506-513.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]

D. W. Forslund, C. Wingate, P. Ford, J. Stephen Junkins, and S. C. Pope, “A Distributed Particle Sim-
ulation Code in C++,” Proc. 8th Computing in Civil Engineering Symposium, American Society of
Civil Engineers, 1992, pp. 514-518.

A. C. Robinson, A. L. Ames, H. Eliot, Fang, D. Pavlakos, C. T. Vaughan, and P. Campbell, “Mas-
sively Parallel Computing, C++ and Hydrocode Algorithms,” Proc. 8th Computing in Civil Engineer-
ing Symposium, American Society of Civil Engineers, 1992, pp. 519-526.

J. S. Peery and K. G. Budge, “Experiences in Using C++ to Develop a Next Generation Strong Shock
Wave Physics Code,” Proc. 8th Computing in Civil Engineering Symposium, American Society of
Civil Engineers, 1992.

T. J. Ross, J. P. Morrow, L. R. Wagner and G. F. Luger, “Two Paradigms for OOP Models for Scien-
tific Applications,” Proc. 8th Computing in Civil Engineering Symposium, American Society of Civil
Engineers, 1992, pp. 535-542.

T. J. Ross, L. R. Wagner and G. F. Luger, “Object-Oriented programming for scientific codes:
Thoughts and Concepts,” and “Object-Oriented programming for scientific codes: Examples in C++,"
Univ. New Mexico Technical Report No. CS92-2, to appear in ASCE Journal of Computing in Civil
Engineering.

J. M. Coggins, “C++ in Numerical and Scientific Computing,” C++ Report, 4(3), 1992, pp. 65-68.

M. B. Stephenson, S. A. Canann and T. D. Blacker, “Plastering: A New Approach to Automated, 3D
Hexahedral Mesh Generation”, Sandia National Laboratories Report, SAND89-2192, February 1992.

T. Keffer, “Object-Oriented Numerics, Part 2: Virtual Algorithms,” The C++ Journal, 2(2), 1992, pp.
3-8.

I. G. Angus, “An Object Oriented Approach to Boundary Conditions in Finite Difference Fluid
Dynamics Codes,” Scalable High Performance Computing Conference, 1992.

I. G. Angus, “Image Algebra: An Object Oriented Approach to Transparently Concurrent Image Pro-
cessing,” Scalable High Performance Computing Conference, 1992.

D. Quinlan, “Workshop on C++ for Scientific Computing”, Abstracts in the proceedings of the SIAM
Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, April 9-14, 1992.

W. S. Brainerd, C. H. Goldberg and J. C. AdaRmsgrammer’s Guide to Fortran 90AcGraw-Hill,
1990.

L.M. Taylor and D.P. Flanagan, “PRONTO-3D: A Three-Dimensional Transient Solid Dynamics Pro-
gram,” Sandia National Laboratories Report, SAND87-1912, 1989.

K.G. Budge, “PHYSLIB: A C++ Tensor Class Library,” Sandia National Laboratories Report,
SAND91-1752, 1991.

G. Walker, “Why the Choice Must Be C++,” The C++ Journal 2(1), 1992.

R. B. Davies, “Notes for the library working group of WG21/X3J16,” Presented at C++ Standards
Committee Meeting, March 1991.

N. M. Wilkinson, “C++ Return Value Optimization,” The C++ Journal, 2 (1), 1992, p. 47.

	Introduction
	C++ As a Meta-Language for Mathematical Physics
	Encapsulation of Physical Concepts
	Tracer Particle Objects
	C++ Software Engineering Experience
	C++ Reusability
	C++ Efficiency Issues for Overloaded Operators
	Summary
	Acknowledgments
	References

